新聞詳情

食用菌蛋白的營(yíng)養(yǎng)功能及作為替代蛋白資源的研究進(jìn)展

發(fā)表時(shí)間:2025-04-17 16:46

蛋白質(zhì)作為生命體的核心營(yíng)養(yǎng)成分,不僅在能量代謝中發(fā)揮關(guān)鍵作用,更是維持細(xì)胞生理平衡、調(diào)控生物大分子合成等基礎(chǔ)生命活動(dòng)的物質(zhì)基礎(chǔ)。預(yù)計(jì)到2050年,隨著全球人口增長(zhǎng)至約100億,對(duì)蛋白質(zhì)的需求總量將持續(xù)激增[1]。然而,傳統(tǒng)畜牧業(yè)提供的動(dòng)物源性蛋白質(zhì)存在明顯局限性,如消耗大量的農(nóng)業(yè)用地和淡水資源,溫室氣體大量排放以及氮磷污染物排放對(duì)水生態(tài)系統(tǒng)構(gòu)成的持續(xù)性威脅。從公共衛(wèi)生角度來看,長(zhǎng)期過量攝入紅肉及加工肉制品已被證實(shí)與動(dòng)脈粥樣硬化等病理性代謝過程呈顯著正相關(guān)[2-3]。在這種背景下,面對(duì)人口增長(zhǎng)與膳食結(jié)構(gòu)轉(zhuǎn)型帶來的雙重挑戰(zhàn),開發(fā)新型可持續(xù)的蛋白供給體系已成為確保全球營(yíng)養(yǎng)安全戰(zhàn)略的重要課題,這不僅涉及食品科技的創(chuàng)新,更關(guān)乎生態(tài)文明建設(shè)和公共衛(wèi)生治理的協(xié)同發(fā)展。

食用菌富含蛋白質(zhì)、脂類、碳水化合物、礦物質(zhì)以及維生素等營(yíng)養(yǎng)物質(zhì),其中食用菌蛋白質(zhì)表現(xiàn)出較高的營(yíng)養(yǎng)價(jià)值和良好的生物活性。研究顯示,食用菌蛋白質(zhì)含有豐富的必需氨基酸,其營(yíng)養(yǎng)價(jià)值可與肉、蛋、奶相媲美[4],且其富含的凝集素、真菌免疫調(diào)節(jié)蛋白(FIPs)、核糖體失活蛋白(RIPs)等活性蛋白在免疫調(diào)節(jié)、抗病毒、抗腫瘤等方面具有顯著作用[5]。因此,食用菌蛋白質(zhì)作為一種替代性蛋白質(zhì)來源,以其高質(zhì)量、易于生產(chǎn)和低成本的優(yōu)勢(shì),受到了廣泛關(guān)注。然而,目前關(guān)于食用菌蛋白營(yíng)養(yǎng)價(jià)值、種類及特性方面的研究成果尚未進(jìn)行系統(tǒng)綜述。因此,本文闡述了食用菌蛋白質(zhì)作為蛋白替代源的最新進(jìn)展,總結(jié)了其營(yíng)養(yǎng)價(jià)值、特性及生物活性,并討論了其進(jìn)一步應(yīng)用所面臨的挑戰(zhàn),為食用菌蛋白質(zhì)在食品領(lǐng)域的應(yīng)用提供新的視角,也為未來食品科技的發(fā)展提供了重要的理論依據(jù)。


食用菌蛋白質(zhì)的營(yíng)養(yǎng)價(jià)值



1.1蛋白質(zhì)含量

食用菌因其較高的蛋白質(zhì)含量,被視為一種重要的替代蛋白源。已有研究表明,常見食物中的全脂牛奶蛋白質(zhì)含量為26.32%,雞蛋為53%,牛肉干為33.20%,扁豆為22.92%,黑豆為21.60%,而魚類和甲殼類動(dòng)物的蛋白質(zhì)含量為58%~90%[6-7]。相比之下,食用菌中的蛋白質(zhì)水平通常為19%~35%,平均值為23.80%(干質(zhì)量)[8-9]。根據(jù)文獻(xiàn)報(bào)道,姬松茸Agaricus blazei、金頂側(cè)耳Cantharellus cibarius、灰樹花Copyinds comatus、蛹蟲草Cordyceps militaris、蟹味菇Hypsizygus tessulatus、羊肚菌Morchella esculenta、口蘑Tricholoma及草菇Volvariella volvacea等品種含有較高含量的蛋白質(zhì)(表1),其含量約為一般蔬菜如大白菜、黃瓜等蛋白質(zhì)含量的10倍,與肉類相當(dāng)[10]。食用菌不僅蛋白質(zhì)含量高,還具有循環(huán)、高效、生態(tài)的特點(diǎn),成為補(bǔ)充優(yōu)良蛋白質(zhì)資源的理想選擇。


1.2蛋白質(zhì)氨基酸組成及評(píng)分


氨基酸組成均衡

蛋白質(zhì)質(zhì)量的核心在于其氨基酸平衡模式能否有效滿足機(jī)體對(duì)必需氨基酸(EAA)的生理需求,這是維持蛋白質(zhì)合成代謝及生理功能正?;奈镔|(zhì)基礎(chǔ)。在營(yíng)養(yǎng)評(píng)價(jià)體系中,必需氨基酸評(píng)分(Essential amino acid score,EAAS)通過比較蛋白質(zhì)中每種EAA含量與FAO/WHO推薦模式的符合度進(jìn)行量化評(píng)估,當(dāng)EAAS≥1.0時(shí),表明該蛋白源可滿足成人對(duì)EAA需求閾值。Bach F等[21]研究指出,雙孢蘑菇Agaricus bisporus、香菇Lentinus edodes及平菇Pleurotus ostreatus的EAAS均大于1.0,表明其具備完整的EAA供給能力。進(jìn)一步研究發(fā)現(xiàn),金頂側(cè)耳與猴頭菇Hericium erinaceus等食用菌不僅包含全部9種必需氨基酸(包括賴氨酸、亮氨酸、纈氨酸等關(guān)鍵組分),其氨基酸平衡模式更接近FAO/WHO理想蛋白質(zhì)標(biāo)準(zhǔn)[22]。李泰等[23]對(duì)26種市售食用菌進(jìn)行了氨基酸譜分析,結(jié)果顯示蛋氨酸含量普遍高于常規(guī)植物蛋白,而異亮氨酸與纈氨酸則成為主要限制性氨基酸。與植物蛋白相比,除大豆蛋白外,多數(shù)植物源蛋白因EAA構(gòu)成不完整而被歸類為不完全蛋白[24];而動(dòng)物蛋白雖具有氨基酸平衡優(yōu)勢(shì),同時(shí)也伴隨著膽固醇及飽和脂肪酸等代謝綜合征風(fēng)險(xiǎn)因子的富集,長(zhǎng)期過量攝入會(huì)增加肥胖、2型糖尿病、動(dòng)脈粥樣硬化等營(yíng)養(yǎng)代謝性疾病的風(fēng)險(xiǎn)。因此,食用菌蛋白質(zhì)兼具氨基酸完整性與健康營(yíng)養(yǎng)的雙重優(yōu)勢(shì),是一類可持續(xù)開發(fā)的優(yōu)質(zhì)蛋白資源。


蛋白質(zhì)質(zhì)量分析

氨基酸校正計(jì)分(Protein digestibility-corrected amino acid score,PDCAAS)是國(guó)際公認(rèn)的蛋白質(zhì)質(zhì)量評(píng)價(jià)方法,結(jié)合了蛋白質(zhì)的氨基酸組成和消化率,是評(píng)估蛋白質(zhì)能否滿足人體需求的核心指標(biāo)。據(jù)報(bào)道,食用菌的PDCAAS值在0.35~0.70[25],如雙孢蘑菇、香菇、杏鮑菇Pleurotus eryngii、平菇、灰口蘑Tricholoma terreum和松乳菇Lactarius deliciosus的PDCAAS值分別為0.40,0.38,0.45,0.45,0.63和0.70,其中灰口蘑和松乳菇蛋白質(zhì)質(zhì)量較高[26-28]。食用菌蛋白質(zhì)的PDCAAS值略高于多數(shù)谷物,但仍低于大豆和動(dòng)物蛋白,這主要是由于細(xì)胞壁中含有較高水平的幾丁質(zhì)和β-葡聚糖,其復(fù)雜的交聯(lián)結(jié)構(gòu)導(dǎo)致蛋白質(zhì)釋放率低。但大豆含有的抗?fàn)I養(yǎng)因子(包括胰蛋白酶抑制因子、糜蛋白酶抑制因子等)影響宿主腸道健康,降低了大豆的營(yíng)養(yǎng)價(jià)值和利用效率[29]。相比之下,食用菌蛋白質(zhì)的消化率及氨基酸組成因品種差異、栽培條件及加工方式的不用而有所變化,通過采用蛋白酶水解細(xì)胞壁可釋放更多可消化蛋白質(zhì),微生物發(fā)酵也能增加游離氨基酸含量。此外,基于營(yíng)養(yǎng)互補(bǔ)原則,富含蛋氨酸的食用菌與一些低蛋氨酸含量的谷物或豆類(如玉米、大豆、花生[30])搭配食用,能夠彌補(bǔ)氨基酸組成的不足之處(表2)。


食用菌蛋白質(zhì)的功能特性


除富含營(yíng)養(yǎng)價(jià)值高的蛋白質(zhì)外,食用菌還含有多種具有功能性的蛋白質(zhì)[31],這些功能性蛋白質(zhì)包括凝集素、真菌免疫調(diào)節(jié)蛋白質(zhì)(FIPs)以及具有酶活性的蛋白質(zhì),如核糖體失活蛋白質(zhì)(RIPs)、核酸酶、漆酶和其他酶類等(圖1)[31]。

圖 1 食用菌活性蛋白質(zhì)的抗腫瘤、免疫調(diào)節(jié)、抗菌、抗病毒等作用[31]

Fig. 1 The role of active proteins in edible fungi in anti-tumor, immune regulation, antibacterial, antiviral and other aspects



2.1凝集素

凝集素(lectin)是一類具有糖結(jié)合活性的蛋白質(zhì),能夠特異性地識(shí)別并結(jié)合細(xì)胞表面的糖蛋白或糖脂中的糖鏈結(jié)構(gòu)。凝集素廣泛存在于自然界中,包括植物、動(dòng)物和微生物體內(nèi),而食用菌中的凝集素近年來也逐漸受到研究關(guān)注,其通過結(jié)合糖鏈參與細(xì)胞間識(shí)別、信號(hào)傳導(dǎo)等生物學(xué)過程。食用菌中的凝集素種類多樣,不同真菌來源的凝集素在結(jié)構(gòu)和功能上可能存在顯著差異。雙孢蘑菇凝集素(Agaricus bisporus Lectin,ABL)是最早被報(bào)道的食用菌凝集素之一。近期研究揭示了一種來自雙孢蘑菇的甘露糖結(jié)合凝集素,該凝集素能夠抑制MDA-MB-231細(xì)胞的生長(zhǎng)[32]。此外,一種來自茶樹菇Agrocybe aegerita中的半乳糖凝集素可通過誘導(dǎo)凋亡和促使DNA堿基鏈斷裂對(duì)多種腫瘤細(xì)胞(如S180、HeLa、SW480、SGC7901、MGC80-3、BGC-823和HL-60細(xì)胞)產(chǎn)生廣泛的抑制作用[33]。牛肝菌(Boletus edulis)、猴頭菌中分離出的一些凝集素同樣表現(xiàn)出良好的抗腫瘤活性[34-35]。研究表明,凝集素可以與細(xì)胞表面受體結(jié)合,從而增強(qiáng)淋巴細(xì)胞的有絲分裂并激活級(jí)聯(lián)反應(yīng),最終產(chǎn)生免疫調(diào)節(jié)活性。例如,來自豬苓Polyporus umbellatus、靈芝Ganoderma lingzhi、裂褶菌Schizophyllum commune、金針菇Flammulina velutipes、猴頭菇、蛹蟲草的凝集素均能夠引起小鼠脾淋巴細(xì)胞的有絲分裂反應(yīng),促進(jìn)其增殖[36]。近期,Essedik等[37]的研究顯示,一種紅托竹蓀Dictyophora rubrovalvata凝集素對(duì)網(wǎng)狀內(nèi)皮系統(tǒng)具有免疫刺激作用,能夠促進(jìn)巨噬細(xì)胞和中性粒細(xì)胞的吞噬作用。此外,許多來自姬松茸、皺環(huán)球蓋菇Stropharia rugosoannulata、金頂側(cè)耳、蛹蟲草、黃蘑Pulveroboletus ravenelii、猴頭菇等食用菌的凝集素,在體外對(duì)人類免疫缺陷病毒(HIV)表現(xiàn)出抑制作用(表3)。綜上所述,食用菌凝集素在抗腫瘤、抗病毒以及免疫增強(qiáng)等方面展現(xiàn)了顯著的生物功效,但其作用機(jī)制尚未完全闡明。


2.2真菌免疫調(diào)節(jié)蛋白

真菌免疫調(diào)節(jié)蛋白(Fungal immunomodulatory proteins,F(xiàn)IPs)是從大型真菌(如靈芝、香菇等)中分離出的一類具有顯著免疫調(diào)節(jié)活性的蛋白質(zhì)。這類蛋白通過調(diào)節(jié)免疫細(xì)胞功能、增強(qiáng)機(jī)體免疫力或抑制過度免疫反應(yīng),在抗腫瘤、抗炎及抗感染等領(lǐng)域展現(xiàn)出潛在的應(yīng)用價(jià)值。自從靈芝FIP首次被報(bào)道以來,F(xiàn)IP家族中陸續(xù)發(fā)現(xiàn)了靈芝LZ-8、香菇FIP-fve、金針菇FIP-vvo等。近年來,從虎乳靈芝Lignosus rhinocerotis、虎皮香菇Lentinus tigrinus、真姬菇Hypsizigus marmoreus、羊肚菌、樟芝Antrodia camphorate和金頂側(cè)耳等多種食用菌中發(fā)現(xiàn)了一些FIPs。其中來自虎乳靈芝的FIPs(12.6和13.6kDa)可以誘導(dǎo)Th1和Th2細(xì)胞因子的產(chǎn)生,并對(duì)MCF-7、HeLa、A549和MCF-7細(xì)胞產(chǎn)生細(xì)胞毒性作用[38-39]。樟芝中的免疫調(diào)節(jié)糖蛋白ACA能夠誘導(dǎo)依賴于TLR2/MyD88途徑的巨噬細(xì)胞活化,并促進(jìn)巨噬細(xì)胞的促炎反應(yīng)[40]。此外,F(xiàn)IPs已被證明可以促進(jìn)有絲分裂和刺激淋巴細(xì)胞增殖,通過CD45介導(dǎo)的T細(xì)胞近端信號(hào)通路誘導(dǎo)小鼠和人類CD4+T細(xì)胞發(fā)育成FOXP3+調(diào)節(jié)性T細(xì)胞[41]。食用菌FIPs的免疫調(diào)節(jié)作用機(jī)制主要包括:1)增強(qiáng)巨噬細(xì)胞和樹突狀細(xì)胞的吞噬活性及其抗原呈遞能力;2)刺激T淋巴細(xì)胞增殖;3)調(diào)節(jié)細(xì)胞因子分泌,平衡Th1/Th2免疫反應(yīng);4)調(diào)節(jié)Treg細(xì)胞(調(diào)節(jié)性T細(xì)胞)的功能。FIPs是一類兼具基礎(chǔ)研究?jī)r(jià)值和臨床應(yīng)用潛力的生物活性分子,在免疫相關(guān)疾病的干預(yù)中具有獨(dú)特優(yōu)勢(shì)。


2.3具有酶學(xué)活性的蛋白質(zhì)


核糖體失活蛋白家族

核糖體失活蛋白家族(Ribosome-inactivating protein,RIPs)是一類通過水解核糖體RNA(rRNA)的特定堿基(如腺嘌呤),使核糖體失去翻譯功能的酶活性蛋白。這類蛋白在食用菌中也逐漸被發(fā)現(xiàn)并引起關(guān)注。現(xiàn)有研究表明,食用菌中的一些RIPs具有抗腫瘤、抗HIV和抗真菌作用。例如,從龜裂禿馬勃Calvatia caelata、海鮮菇Hypsizygus marmoreus和香菇分離出的RIPs對(duì)腫瘤細(xì)胞MDA-MB-231、L1210、HL60、HepG2、MCF-7、HeLa、COLO320和U87MG細(xì)胞系表現(xiàn)出良好的抑制作用(表3)。來自真姬菇中的FIPs通過降低雌激素受體α的表達(dá)和促凋亡途徑對(duì)MCF-7細(xì)胞表現(xiàn)出抑制作用,同時(shí)可激活MCF-7和MDA-MB-231細(xì)胞中的死亡受體凋亡途徑和內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),表現(xiàn)為PERK和IRE1α磷酸化、caspase-12活化及CHOP表達(dá)上調(diào)[42]。進(jìn)一步研究表明,真姬菇FIPs還具有抑制HIV-1逆轉(zhuǎn)錄酶、花生球孢菌、蘋果輪紋病菌、尖孢鐮刀菌和灰霉病菌的能力,IC50分別為8,2.7,2.5,14.2和0.06mmol/L[43]。Nielsen等[44]和Zhou等[36]指出,食用菌和植物RIPs的N端序列相似,但抗病毒作用機(jī)制可能有所不同,其中食用菌FIPs的抗病毒活性可能與蛋白質(zhì)相互作用的方式有關(guān),但其作用機(jī)制尚未完全明確。


核酸酶

食用菌中的核酸酶(Nuclease)是一類能夠催化核酸(DNA或RNA)水解的酶,廣泛參與真菌的代謝調(diào)控、營(yíng)養(yǎng)吸收以及防御機(jī)制。這些酶在食用菌生長(zhǎng)、發(fā)育及環(huán)境適應(yīng)中起重要作用,并且因其在食品加工、醫(yī)藥等領(lǐng)域的潛在應(yīng)用而受到關(guān)注。研究表明,一些食用菌核酸酶參與了宿主防御、凋亡或抑制癌癥細(xì)胞生長(zhǎng)的過程,如分離自鳳尾菇Pleurotus sajorcaju、元蘑、靈芝、滑子菇Pholiota nameko、雞油菌Cantharellus cibarius和杏鮑菇的核酸酶在抵抗癌癥細(xì)胞、病毒或真菌生長(zhǎng)方面表現(xiàn)良好(表3)。已有研究表明,食用菌核酸酶的抗腫瘤活性可能與RNA的催化切割、外源酶與細(xì)胞成分的非催化靜電相互作用、膜鈣依賴性鉀通道、ras癌基因功能的調(diào)節(jié)以及胱天蛋白酶或線粒體介導(dǎo)的凋亡途徑的調(diào)節(jié)有關(guān)[36,45-47]。




食用菌蛋白質(zhì)的應(yīng)用

3.1優(yōu)質(zhì)蛋白質(zhì)替代品

食用菌蛋白質(zhì)作為新興的替代蛋白源,憑借其可持續(xù)性、營(yíng)養(yǎng)優(yōu)勢(shì)及技術(shù)可塑性,在全球食品工業(yè)中正引發(fā)一場(chǎng)革新。面對(duì)人口增長(zhǎng)和傳統(tǒng)畜牧業(yè)帶來的環(huán)境壓力,對(duì)市場(chǎng)的需求急劇上升,而食用菌蛋白質(zhì)因其低碳、高效生產(chǎn)及功能多樣性,成為植物基、細(xì)胞培養(yǎng)肉等領(lǐng)域的重要原料之一(圖2)[31]。目前,獲取食用菌蛋白質(zhì)主要途徑包括子實(shí)體栽培和發(fā)酵菌絲體培養(yǎng),其中子實(shí)體的人工種植技術(shù)已較為成熟,而發(fā)酵菌絲體具有高效、可控的特性,更適用于工業(yè)化生產(chǎn)蛋白質(zhì)原料。在替代蛋白產(chǎn)品的開發(fā)中,食用菌蛋白表現(xiàn)出極強(qiáng)的形態(tài)適應(yīng)性。例如,巴西初創(chuàng)公司Nobello利用白蘑菇蛋白經(jīng)酶解生成類酪蛋白膠束,開發(fā)出零膽固醇的“菌基奶酪”,其熔點(diǎn)和拉伸性與傳統(tǒng)的馬蘇里拉奶酪極為相似,已進(jìn)入歐洲餐飲供應(yīng)鏈。荷蘭企業(yè)Meatless Kingdom以杏鮑菇蛋白為核心原料,結(jié)合豌豆分離蛋白,通過高水分?jǐn)D壓技術(shù)模擬雞肉纖維質(zhì)地,顯示了食用菌蛋白質(zhì)在肉類替代品中的潛力。食用菌蛋白質(zhì)正從“小眾原料”轉(zhuǎn)變?yōu)椤爸髁鞯鞍自础?。隨著精密發(fā)酵技術(shù)和細(xì)胞農(nóng)業(yè)的成熟,未來有望實(shí)現(xiàn)“菌-植-動(dòng)”三元蛋白體系的協(xié)同創(chuàng)新。例如,將食用菌蛋白與微藻DHA結(jié)合開發(fā)全營(yíng)養(yǎng)代餐,或?qū)⑵渥鳛檩d體包埋鐵血紅素,改善植物基肉類的色澤與風(fēng)味缺陷。這些進(jìn)展不僅可能重塑全球蛋白供應(yīng)鏈,也為應(yīng)對(duì)糧食安全和生態(tài)危機(jī)提供了關(guān)鍵解決方案。

圖 2 食用菌蛋白質(zhì)在功能性食品、蛋白質(zhì)替代品、動(dòng)物飼料和材料中的應(yīng)用[31]

Fig. 2 The application of edible mushroom protein in functional foods, protein substitutes, animal feed, and materials



3.2功能性食品

食用菌蛋白質(zhì)在功能性食品中的應(yīng)用正逐漸成為食品科學(xué)和營(yíng)養(yǎng)健康領(lǐng)域的研究熱點(diǎn)。由于其富含優(yōu)質(zhì)蛋白質(zhì),食用菌在增強(qiáng)免疫力、調(diào)節(jié)代謝及改善腸道健康等方面展現(xiàn)出獨(dú)特優(yōu)勢(shì)。隨著消費(fèi)者對(duì)天然、可持續(xù)食品需求的增長(zhǎng),食用菌蛋白質(zhì)通過技術(shù)創(chuàng)新被轉(zhuǎn)化為多樣化的功能性食品。例如,美國(guó)公司MycoTechnology開發(fā)的香菇蛋白粉,采用低溫酶解技術(shù)以保留活性成分,作為膳食補(bǔ)充劑用于增強(qiáng)呼吸道黏膜免疫防御功能,尤其受到易感人群的喜愛。荷蘭一家食品科技企業(yè)開發(fā)的“Mushroom Meat”植物肉產(chǎn)品,以平菇蛋白為基底,制成素食香腸,不僅模擬了動(dòng)物肉的口感,還能促進(jìn)腸道雙歧桿菌增殖。在運(yùn)動(dòng)營(yíng)養(yǎng)和抗疲勞產(chǎn)品中,食用菌蛋白質(zhì)的代謝調(diào)節(jié)作用備受關(guān)注。韓國(guó)生物公司利用蛹蟲草(北冬蟲夏草)提取蟲草素蛋白肽,開發(fā)出名為“CordyMax”的能量膠,其通過促進(jìn)ATP合成和線粒體功能,幫助馬拉松運(yùn)動(dòng)員在賽后快速恢復(fù)體力,臨床試驗(yàn)顯示其可將肌肉酸痛恢復(fù)時(shí)間縮短30%。此外,食用菌蛋白質(zhì)在慢性病干預(yù)食品中的應(yīng)用亦取得突破。巴西糖果品牌Cogumelo則用白蘑菇蛋白替代乳粉,推出了低敏且高蛋白的巧克力,解決了乳糖不耐人群的攝入難題。當(dāng)前,食用菌蛋白功能性食品市場(chǎng)正在不斷擴(kuò)大,但風(fēng)味改良、規(guī)模化生產(chǎn)等技術(shù)瓶頸仍需突破。


3.3動(dòng)物飼料

食用菌在動(dòng)物飼料中的應(yīng)用正逐步成為推動(dòng)畜牧業(yè)和水產(chǎn)養(yǎng)殖業(yè)可持續(xù)發(fā)展的重要解決方案。歐盟畜牧業(yè)長(zhǎng)期面臨蛋白原料供應(yīng)危機(jī),70%的富蛋白飼料依賴進(jìn)口大豆。隨著全球?qū)?dòng)物源性食品需求的增長(zhǎng)及傳統(tǒng)飼料原料(如豆粕、魚粉)價(jià)格的上漲與環(huán)境壓力的加劇,為降低生態(tài)風(fēng)險(xiǎn),歐盟在《綠色協(xié)議》框架下加速推進(jìn)替代蛋白戰(zhàn)略,除昆蟲蛋白外,食用菌及其廢料基質(zhì)(Spent mushroom substrate,SMS)被視為解決飼料蛋白問題的重要資源。相較于傳統(tǒng)蛋白源,食用菌蛋白質(zhì)在提升動(dòng)物生長(zhǎng)性能與健康水平上表現(xiàn)良好。用雙孢蘑菇替代15%的魚粉投喂羅非魚,其特定生長(zhǎng)率提高1.7倍,肌肉粗蛋白含量增加2.3%[65]。在虹鱒魚飼料中添加2%的香菇提取物,遭遇細(xì)菌感染時(shí),存活率提高了28%,溶菌酶活性增強(qiáng)了45%[66]。在肉雞日糧中添加0.2%的平菇粉,其腸道絨毛高度增加20%,沙門氏菌定植率降低60%,且其生長(zhǎng)性能與抗生素組無顯著差異[67]。盡管直接添加食用菌的成本較高,限制了其在實(shí)際中的應(yīng)用,但通過添加食用菌SMS可顯著改善經(jīng)濟(jì)可行性。例如,反芻動(dòng)物飼料中高達(dá)21%可以直接用食用菌廢料代替,以降低飼料成本,同時(shí)不損害牲畜健康[68]。這種“廢棄物-飼料”轉(zhuǎn)化模式不僅能降低動(dòng)物飼養(yǎng)成本和SMS處理成本費(fèi)用,還可減少甲烷排放,成為促進(jìn)畜牧業(yè)綠色轉(zhuǎn)型的核心驅(qū)動(dòng)力之一。


3.4新型替代復(fù)合材料

菌絲體復(fù)合材料作為一種可持續(xù)的生物基材料,近年來在材料科學(xué)領(lǐng)域引起了廣泛關(guān)注。此類材料不僅能夠替代傳統(tǒng)的聚合物泡沫和木材粘合劑等,還在建筑、包裝、電子等領(lǐng)域展現(xiàn)出獨(dú)特潛力,其中食用菌蛋白質(zhì)在其中起到了關(guān)鍵作用。菌絲體復(fù)合材料通過機(jī)械聯(lián)鎖和化學(xué)鍵協(xié)同作用表現(xiàn)出優(yōu)異性能,機(jī)械聯(lián)鎖依賴于真菌酶系(如漆酶、纖維素酶)對(duì)基質(zhì)的降解與菌絲網(wǎng)絡(luò)滲透,形成三維互鎖結(jié)構(gòu),化學(xué)鍵作用則主要源于真菌細(xì)胞壁中豐富的蛋白質(zhì)與糖蛋白網(wǎng)絡(luò)。研究表明,不同食用菌種及基質(zhì)組合可定向調(diào)控材料特性,如平菇在纖維素/馬鈴薯葡萄糖基質(zhì)上生長(zhǎng)的復(fù)合材料硬度高于靈芝,因此更適合用于承重結(jié)構(gòu)[69]。Gan等[70]制備了由竹子和平菇制成的菌絲結(jié)合復(fù)合材料,并用于室內(nèi)裝飾。但當(dāng)前研究仍集中于少數(shù)食用菌種(如平菇、靈芝),大多數(shù)可栽培物種尚未開發(fā)。此外,食用菌SMS可以考慮用作生產(chǎn)菌絲體復(fù)合材料的替代源,從而降低成本。食用菌有望從餐桌走向工業(yè)生產(chǎn)線,成為碳中和時(shí)代顛覆性材料的核心生物制造平臺(tái)。這一進(jìn)程不僅將重塑材料供應(yīng)鏈,更可能催生“農(nóng)業(yè)-工業(yè)”協(xié)同創(chuàng)新的新產(chǎn)業(yè)范式。


展望與總結(jié)

4.1展望

穩(wěn)定性和質(zhì)量控制

食用菌的營(yíng)養(yǎng)價(jià)值與生物活性成分易受菌株差異、氣候變化、基質(zhì)組成及采收加工等多重因素影響,這些因素直接關(guān)系到終產(chǎn)品的質(zhì)量,制約產(chǎn)業(yè)向高附加值領(lǐng)域升級(jí)。在此背景下,全產(chǎn)業(yè)鏈標(biāo)準(zhǔn)化管理成為關(guān)鍵策略,如通過精準(zhǔn)調(diào)控溫濕度、光照強(qiáng)度等核心參數(shù),可實(shí)現(xiàn)生長(zhǎng)周期的標(biāo)準(zhǔn)化;利用物聯(lián)網(wǎng)傳感器網(wǎng)絡(luò)實(shí)時(shí)采集環(huán)境數(shù)據(jù),結(jié)合機(jī)器學(xué)習(xí)算法預(yù)測(cè)最佳采收;建立基質(zhì)原料的快速檢測(cè)標(biāo)準(zhǔn),可顯著降低因原材料波動(dòng)導(dǎo)致的品質(zhì)風(fēng)險(xiǎn),使蛋白質(zhì)等活性成分的批次差異實(shí)現(xiàn)有效控制,實(shí)現(xiàn)食用菌產(chǎn)業(yè)從經(jīng)驗(yàn)種植向數(shù)據(jù)驅(qū)動(dòng)轉(zhuǎn)型,也是滿足功能性食品與醫(yī)藥原料嚴(yán)格質(zhì)量要求的必然選擇。


風(fēng)味感官品質(zhì)提升

在食品加工過程中,食用菌常面臨感官接受度的挑戰(zhàn),主要是由于其特有的揮發(fā)性硫化物與甜味或乳脂類食材之間產(chǎn)生味覺拮抗。采用酶解定向調(diào)控、美拉德反應(yīng)修飾等風(fēng)味優(yōu)化技術(shù),以及超微粉碎、微膠囊化和質(zhì)構(gòu)重組技術(shù)等改良策略,是突破該瓶頸的有效路徑。隨著感官科學(xué)、食品工程與神經(jīng)消費(fèi)學(xué)的跨學(xué)科融合,食用菌基食品有望突破"健康但難吃"的固有認(rèn)知,開啟營(yíng)養(yǎng)與美味兼具的新代際產(chǎn)品紀(jì)元。


高產(chǎn)蛋白食用菌品種選育技術(shù)創(chuàng)新

為應(yīng)對(duì)全球蛋白質(zhì)供應(yīng)危機(jī),高產(chǎn)蛋白食用菌菌株的選育技術(shù)成為核心突破口。當(dāng)前,傳統(tǒng)育種技術(shù)與現(xiàn)代分子生物學(xué)工具的深度融合,正推動(dòng)食用菌育種體系從經(jīng)驗(yàn)篩選向精準(zhǔn)化、智能化跨越。在傳統(tǒng)技術(shù)領(lǐng)域,基于ARTP(常壓室溫等離子體)誘變、孢子雜交及空間誘變等物理化學(xué)誘變技術(shù),通過高通量篩選模型實(shí)現(xiàn)了效能提升,打破了菌株遺傳多樣性的限制。而在前沿技術(shù)層面,以CRISPR/Cas9基因編輯為核心的靶向基因組修飾技術(shù)可精準(zhǔn)調(diào)控蛋白合成相關(guān)基因簇(如核糖體生物合成基因、氨基酸轉(zhuǎn)運(yùn)體編碼基因),顯著提高菌絲體蛋白含量;合成生物學(xué)技術(shù)通過重構(gòu)代謝網(wǎng)絡(luò),設(shè)計(jì)高效表達(dá)外源蛋白的工程菌株;結(jié)合基因組、轉(zhuǎn)錄組與代謝組的多組學(xué)驅(qū)動(dòng)育種體系,則可系統(tǒng)性解析碳氮代謝流分配機(jī)制,建立蛋白積累的分子調(diào)控網(wǎng)絡(luò)。


4.2總結(jié)

全球人口增長(zhǎng)與膳食結(jié)構(gòu)升級(jí)加劇了蛋白質(zhì)需求,傳統(tǒng)動(dòng)物蛋白因資源消耗高、環(huán)境壓力大及健康風(fēng)險(xiǎn)面臨轉(zhuǎn)型挑戰(zhàn)。食用菌生產(chǎn)具有資源高效、低碳排放及低水耗特性,符合全球碳中和與循環(huán)經(jīng)濟(jì)目標(biāo),且其蛋白質(zhì)含有完整的必需氨基酸和豐富的活性成分,具備較高的營(yíng)養(yǎng)價(jià)值與功能特性應(yīng)用價(jià)值,可用于開發(fā)功能性食品、植物基替代肉等高附加值產(chǎn)品,成為可持續(xù)替代蛋白的重要來源。目前食用菌蛋白質(zhì)面臨的規(guī)?;a(chǎn)難題、功能機(jī)制不清,風(fēng)味及質(zhì)構(gòu)等與傳統(tǒng)動(dòng)物蛋白存在差異等核心瓶頸依舊有待解決。未來,通過合成生物學(xué)、智能加工等技術(shù)突破,利用“農(nóng)業(yè)廢棄物-菌體蛋白-功能性產(chǎn)品”的閉環(huán)產(chǎn)業(yè)鏈等產(chǎn)業(yè)協(xié)同模式,有望加速其從實(shí)驗(yàn)室到餐桌的轉(zhuǎn)化,助力全球蛋白質(zhì)供給的綠色轉(zhuǎn)型。



參考文獻(xiàn):

[1] Scholtmeijer K,van den Broek L A M,Fischer A R H, et al. Potential protein production from lignocellulosic materials using edible mushroom forming fungi[J]. Journal of Agricultural and Food Chemistry, 2023, 71(11): 4450-4457.

[2] Leroy F, Beal T, Gregorini P, et al. Nutritionism in a food policy context: the case of ‘a(chǎn)nimal protein’[J]. Animal Production Science, 2022, 62(8): 712-720.

[3] Ayimbila F, Keawsompong S. Nutritional quality and biological application of mushroom protein as a novel protein alternative[J]. Current Nutrition Reports, 2023, 12(2): 290-307.

[4] Gopal J, Sivanesan I, Muthu M, et al. Scrutinizing the nutritional aspects of Asian mushrooms, its commercialization and scope for value-added products[J]. Nutrients, 2022, 14(18): 3700.

[5] Xu X F, Yan H D, Chen J, et al. Bioactive proteins from mushrooms[J]. Biotechnology Advances, 2011, 29(6): 667-674.

[6] Floret C, Monnet A F, Micard V, et al. Replacement of animal proteins in food: how to take advantage of nutritional and gelling properties of alternative protein sources[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(7): 920-946.

[7] González A, Cruz M, Losoya C, et al. Edible mushrooms as a novel protein source for functional foods[J]. Food & Function, 2020, 11(9): 7400-7414.

[8] Zhou J J, Chen M F, Wu S J, et al. A review on mushroom-derived bioactive peptides: Preparation and biological activities[J]. Food Research International, 2020, 134: 109230.

[9] Yadav D, Negi P S. Bioactive components of mushrooms: Processing effects and health benefits[J]. Food Research International, 2021, 148: 110599.

[10] 楊月欣.中國(guó)食物成分表[M].北京:北京大學(xué)醫(yī)學(xué)出版社,2002.

[11] Yu QN, Guo M J, Zhang B, et al. Analysis of nutritional composition in 23 kinds of edible fungi[J]. Journal of Food Quality, 2020, 2020: 8821315.

[12] Wang J B, Li W, Li Z P, et al. Analysis and evaluation of the characteristic taste components in portobello mushroom[J]. Journal of Food Science, 2018, 83(6): 1542-1551.

[13] Jacinto-Azevedo B, Valderrama N, Henríquez K, et al. Nutritional value and biological properties of chilean wild and commercial edible mushrooms[J]. Food Chemistry, 2021, 356: 129651.

[14] Kumar R, Tapwal A, Pandey S, et al. Macro-fungal diversity and nutrient content of some edible mushrooms of Nagaland, India[J]. Nusantara Bioscience, 2016, 5(1): 7.

[15] Guo J., Shi S., Xie T., et al. Evaluation of auricularia auricula-judae nutrient quality of different origins in heilongjiang province based on principal component analysis [J]. Journal of Agricultural Science and Technology, 2019, 21: 7.

[16] Chen C, Han Y L, Li S Y, et al. Nutritional, antioxidant, and quality characteristics of novel cookies enriched with mushroom (Cordyceps militaris) flour[J]. CyTA - Journal of Food, 2021, 19(1): 137-145.

[17] Stilinovi? N, ?apo I, Vukmirovi? S, et al. Chemical composition, nutritional profile and in vivo an tioxidant properties of the cultivated mushroom Coprinus comatus[J]. Royal Society Open Science, 2020, 7(9): 200900.

[18] Cohen N, Cohen J, Asatiani M D, et al. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms[J]. International Journal of Medicinal Mushrooms, 2014, 16(3): 273-291.

[19] Ekute B. Nutritional profile of two nigerian edible mushrooms: Pleurotus ostreatus and Pleurotus pulmonarius [J]. J. Appl. Sci. Environ. Manag, 2018, 22: 3.

[20] Chen X, Zhang Z, Liu X X, et al. Characteristics analysis reveals the progress of Volvariella volvacea mycelium subculture degeneration[J]. Frontiers in Microbiology, 2019, 10: 2045.

[21] Bach F, Helm C V, Bellettini M B, et al. Edible mushrooms: a potential source of essential amino acids, glucans and minerals[J]. International Journal of Food Science and Technology, 2017, 52(11): 2382-2392.

[22] Huang Q, Wang L, Zhang L, et al. Evaluation of amino acid characteristics and nutrient composition of six edible fungi cultivated by cinnamon [J]. Chinese Journal of Tropical Crops, 2021, 42(12): 8.

[23] 李泰,盧士軍,孫君茂,等.26種常見市售食用菌營(yíng)養(yǎng)成分分析及評(píng)價(jià)[J].中國(guó)食用菌,2021,40(12):66-72.

[24] 美中健康產(chǎn)品協(xié)會(huì).兼具口感、質(zhì)感和營(yíng)養(yǎng)的植物蛋白產(chǎn)品[J].食品安全導(dǎo)刊,2017(34):64-65.

[25] Ayimbila F, Keawsompong S. Nutritional quality and biological application of mushroom protein as a novel protein alternative[J]. Current Nutrition Reports, 2023, 12(2): 290-307.

[26] Dabbour I R, Takruri H R. Protein digestibility using corrected amino acid score method (PDCAAS) of four types of mushrooms grown in Jordan[J]. Plant Foods for Human Nutrition, 2002, 57(1): 13-24.

[27] Cuptapun Y, Hengsawadi D, Mesomya W, et al. Quality and quantity of protein in certain kinds of edible mushroom in Thailand[J]. Kasetsart Journal: Natural Science, 2010, 44: 7.

[28] D?ez VA, Alvarez A. Compositional and nutritional studies on two wild edible mushrooms from northwest Spain[J]. Food Chemistry, 2001, 75(4): 417-422.

[29] 齊寶坤,王琪,鐘明明,等.高壓均質(zhì)輔助酶解豆乳對(duì)蛋白結(jié)構(gòu)及抗?fàn)I養(yǎng)因子的影響[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2023,54(2):368-377.

[30] 肖瀟,尹勝,侯威,等.四種植物蛋白的成分與營(yíng)養(yǎng)學(xué)特性分析[J].食品科學(xué)技術(shù)學(xué)報(bào),2016,34(3):61-66,73.

[31] Liu P, Zhang Z, Wu D, et al. The prospect of mushroom as an alterative protein: From acquisition routes to nutritional quality, biological activity, application and beyond[J]. Food Chemistry, 2025, 469: 142600.

[32] Azzahra F, Amalia R, Karsono A H, et al. The mannose-binding protein from Agaricus bisporus inhibits the growth of MDA-MB-231 spheroids[J]. Chemical Biology & Drug Design, 2024, 103(1): e14365.

[33] Zhao C G, Sun H, Tong X, et al. An antitumour lectin from the edible mushroom Agrocybe aegerita[J]. Biochemical Journal, 2003, 374(2): 321-327.

[34] BoviM, Carrizo M E, Capaldi S, et al. Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms[J]. Glycobiology, 2011, 21(8): 1000-1009.

[35] Li Y R, Zhang G Q, Ng T B, et al. A novel lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from dried fruiting bodies of the monkey head mushroom Hericium erinaceum[J]. Journal of Biomedicine and Biotechnology, 2010, 2010: 716515.

[36] Zhou R, Liu Z K, Zhang Y N, et al. Research progress of bioactive proteins from the edible and medicinal mushrooms[J]. Current Protein & Peptide Science, 2019, 20(3): 196-219.

[37] Esseddik T M, Redouane R, Farouk K F, et al. In vivo immunomodulatory potential of partial purified lectin from the saffron milk

cap mushroom, Lactarius deliciosus   (Agaricomycetes), against colloidal carbon particles[J].   International Journal of Medicinal Mushrooms, 2020, 22(11): 1043-1055.

[38] Pushparajah V, Fatima A, Chong C H, et al. Characterisation of a new fungal immunomodulatory protein from tiger milk mushroom, Lignosus rhinocerotis[J]. Scientific Reports, 2016, 6: 30010.

[39] Ejike U C, Chan C J, Lim C S Y, et al. Functional evaluation of a recombinant fungal immunomodulatory protein from L. rhinocerus produced in P. pastoris and E. coli host expression systems[J]. Applied Microbiology and Biotechnology, 2021, 105(7): 2799-2813.

[40] Gao yingnyu, Wáng Y, Wāng Y, et al. Protective function of novel fungal immunomodulatory proteins fip-lti1 and fip-lti2 from Lentinus tigrinus in concanavalin A-induced liver oxidative injury[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 3139689.

[41] Hsu H Y, Kuan Y C, Lin T Y, et al. Reishi protein LZ-8 induces FOXP3+ Treg expansion via a CD45-dependent signaling pathway and alleviates acute intestinal inflammation in mice[J]. Evid Based Complement Alternat Med, 2013, 2013: 513542.

[42] Pan W L, Wong J H, Fang E F, et al. Differential inhibitory potencies and mechanisms of the type I ribosome inactivating protein marmorin on estrogen receptor (ER)-positive and ER-negative breast cancer cells[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2013, 1833(5): 987-996.

[43] Lam S K, Ng T B. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus[J]. Biochemical and Biophysical Research Communications, 2001, 285(4): 1071-1075.

[44] Nielsen K, Boston R S. Ribosome-inactivating proteins: a plant perspective[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 785-816.

[45] Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy[J]. European Journal of Pharmacology, 2009, 625(1-3): 181-189.

[46] Ilinskaya ON, MakarovA A. Why ribonucleases induce tumor cell death[J]. Molecular Biology, 2005, 39(1): 1.

[47] Rutkoski T, Raines R. Evasion of ribonuclease inhibitor as a determinant of ribonuclease cytotoxicity[J]. Current Pharmaceutical Biotechnology, 2008, 9(3): 185-199.

[48] Wang YF, Zhang YF, Shao J J, et al. Potential immunomodulatory activities of a lectin from the mushroom Latiporus sulphureus[J]. International Journal of Biological Macromolecules, 2019, 130: 399-406.

[49] Li F, Wen H A, Zhang Y J, et al. Purification and characterization of a novel immunomodulatory protein from the medicinal mushroom Trametes versicolor[J]. Science China Life Sciences, 2011, 54(4): 379-385.

[50] Zhang Z, Wu D, Li W, et al. Structural elucidation and anti-inflammatory activity of a proteoglycan from spent substrate of Lentinula edodes[J]. International Journal of Biological Macromolecules, 2023, 224: 1509-1523.

[51] Zhang G Q, Chen Q J, Hua J, et al. An inulin-specific lectin with anti-HIV-1 reverse transcriptase, antiproliferative, and mitogenic activities from the edible mushroom Agaricusbitorquis[J]. BioMed Research International, 2019, 2019: 1341370.

[52] Zhang W W, Tian G T, Geng X R, et al. Isolation and characterization of a novel lectin from the edible mushroom Stropharia rugosoannulata[J]. Molecules, 2014, 19(12): 19880-19891.

[53] Wang S X, Zhang G Q, Zhao S, et al. Purification and characterization of a novel lectin with antiphytovirus activities from the wild mushroom Paxillus involutus[J]. Protein & Peptide Letters, 2013, 20(7): 767-774.

[54] Sheu F, Chien P J, Hsieh K Y, et al. Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-κB activation and M1 polarization within murine macrophages[J]. Journal of Agricultural and Food Chemistry, 2009, 57(10): 4130-4141.

[55] Citores L, Ragucci S, Gay C C, et al. Edodin: a new type of toxin from shiitake mushroom (Lentinula edodes) that inactivates mammalian ribosomes[J]. Toxins, 2024, 16(4): 185.

[56] Lam S K, Ng T B. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom hypsizigus marmoreus[J]. Biochemical and Biophysical Research Communications, 2001, 285(4): 1071-1075.

[57] Lam S K, Ng T B. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllumshimeji) together with evidence for synergism of their antifungal effects[J]. Archives of Biochemistry and Biophysics, 2001, 393(2): 271-280.

[58] Wong J H, Wang H X, Ng T B. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus[J]. Applied Microbiology and Biotechnology, 2008, 81(4): 669-674.

[59] Zhang R, Zhao L Y, Wang H X, et al. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina[J]. International Journal of Molecular Medicine, 2014, 33(1): 209-214.

[60] Dan X L, Liu W L, Wong J H, et al. A ribonuclease isolated from wild Ganoderma lucidum suppressed autophagy and triggered apoptosis in colorectal cancer cells[J]. Frontiers in Pharmacology, 2016, 7: 217.

[61] Zhang Y N, Liu Z K, Ng T B, et al. Purification and characterization of a novel antitumor protein with antioxidant and deoxyribonuclease activity from edible mushroom Pholiota nameko[J]. Biochimie, 2014, 99: 28-37.

[62] Zhou R, Han Y J, Zhang M H, et al. Purification and characterization of a novel ubiquitin-like antitumour protein with hemagglutinating and deoxyribonuclease activities from the edible mushroom Ramaria botrytis[J]. AMB Express, 2017, 7(1): 47.

[63] Ragucci S, LandiN, Citores L, et al. The biological action and structural characterization of eryngitin 3 and 4, ribotoxin-like proteins from Pleurotus eryngii fruiting bodies[J]. International Journal of Molecular Sciences, 2023, 24(19): 14435.

[64] Ngai P H K, Ng T B. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju[J]. Peptides, 2004, 25(1): 11-17.

[65] Paripuranam T D, Divya V V, Ulaganathan P, et al. Replacing fish meal with earthworm and mushroom meals in practical diets of Labeorohita and Hemigrammus caudovittatus fingerlings[J]. Indian Journal of Animal Research, 2011, 45(2): 115-119.

[66] Baba E, Uluk?y G, ?nta? C. Effects of feed supplemented with Lentinula edodes mushroom extract on the immune response of rainbow trout, Oncorhynchus mykiss, and disease resistance against Lactococcus garvieae[J]. Aquaculture, 2015, 448: 476-482.

[67] Lima G A, Barbosa B F S, Araujo R G A C, et al. Agaricus subrufescens and Pleurotus ostreatus mushrooms as alternative additives to antibiotics in diets for broilers challenged with Eimeria spp.[J]. British Poultry Science, 2021, 62(2): 251-260.

[68] Moradzadeh-Somarin Z, Seifdavati J, Yalchi T, et al. Valorization of dietary edible mushrooms waste: chemical and physical properties, nutrient digestibility, microbial protein synthesis and nitrogen balance in sheep[J]. Journal of the Science of Food and Agriculture, 2021, 101(13): 5574-5582.

[69] HaneefM, Ceseracciu L, Canale C, et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties[J]. Scientific Reports, 2017, 7: 41292.

[70] Gan J K, Soh E, Saeidi N, et al. Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage[J]. Scientific Reports, 2022, 12: 19362.












人類持續(xù)健康 · 華綠不斷壯大

聯(lián)系電話:400-0300-073
聯(lián)系郵箱:hualv@chinagreenbio.com
聯(lián)系地址:江蘇省宿遷市泗陽縣綠都大道88號(hào)

股票簡(jiǎn)稱:華綠生物
股票代碼:300970
江蘇華綠生物科技集團(tuán)股份有限公司
JIANG SU CHINAGREEN BIOLOGICAL TECHNOLOGY GROUP CO., LTD.
社會(huì)公益
最新動(dòng)態(tài)
吃菇小廚
我們團(tuán)隊(duì)